ERRATA

Page	Correction
66	Exercise, Question 4:
	$4x = 2^{x+1} + 12$ should read as $4^x = 2^{x+1} + 12$
73	Example 3:
	In the seventh line of the workings, $2 \sin A - 4 \sin^3 A$ should read as $3 \sin A - 4 \sin^3 A$
86	Example 18(a):
	The solution should read as
	$12\cos x - 5\sin x \equiv R\cos(x + \alpha)$
	a=12, b=5
	$r = \sqrt{a^2 + b^2}$ $\tan \alpha = \frac{b}{a}$
	$\frac{a}{a}$
	$= \sqrt{12^2 + 5^2} \qquad = \frac{5}{12}$
	$= 13 = 25.1^{\circ}$
	$\therefore 12\cos x - 5\sin x \equiv 13\cos(x + 25.1^{\circ})$
86	Example 18(b):
	The solution for the greatest value of $12 \cos x - 5 \sin x$ should read as
	$\cos(x+25.1^\circ)=1,$
	$x + 25.1^{\circ} = 360^{\circ}$
	$x = 334.9^{\circ}$
	The solution for the least value of $12 \cos x - 5 \sin x$ should read as
	$cos(x + 25.1^{\circ}) = -1,$ $x + 25.1^{\circ} = 180^{\circ}$
	x + 25.1 = 160 $x = 154.9^{\circ}$
87	Example 18(c):
07	The graph should read as
	y
	13 12
	\sim \sim \sim
	0° 154.9° 180° 334.9° 360°
	-13
110	Example 24:
	The final answer should read as $-\frac{1}{x^2+1}$
133	Example 2:
	$2\int \frac{2x+2}{x^2+x+3} dx$ should read as $2\int \frac{2x+1}{x^2+x+3} dx$
	$\int x^2 + x + 3$ $\int x^2 + x + 3$
142	Example 13:
	The workings and solution should read as
	$\int \frac{e^{2x} - 3e^x + 1}{e^x} dx = \int \left(\frac{e^{2x}}{e^x} - \frac{3e^x}{e^x} + \frac{1}{e^x} \right) dx$
	$\int \frac{\mathbf{e}^x}{\mathbf{e}^x} dx = \int \left(\frac{\mathbf{e}^x}{\mathbf{e}^x} - \frac{\mathbf{e}^x}{\mathbf{e}^x} \right) dx$
	$= \int (a^{x} - 2 + a^{-x}) dx$
	$= \int (\mathbf{e}^x - 3 + \mathbf{e}^{-x}) \mathrm{d}x$
	$= e^x - 3x - e^{-x} + c$

ERRATA

446	
146	Example 19:
	$\frac{1}{4} \int_{0}^{\frac{\pi}{2}} \frac{\cos 3x + 3\cos x dx}{4} \text{ should read as } \frac{1}{4} \int_{0}^{\frac{\pi}{2}} (\cos 3x + 3\cos x) dx$
	$4 \int_0^{\infty} 4 \int_0^{\infty} (\cos 3x + 3\cos x) dx$
156	Example 33:
	In the first line of the workings, $x \tan^{-1} x$ should read as $x \tan^{-1} x$
157	Exercise 7.3, Question 9:
	$\int_{0}^{2} \tan^{-1} \left(\frac{1}{x}\right) dx \text{ should read as } \int_{1}^{2} \tan^{-1} \left(\frac{1}{x}\right) dx$
	$\int_0^1 \tan^2 \left(\frac{1}{x}\right) dx \text{ should read as } \int_1^1 \tan^2 \left(\frac{1}{x}\right) dx$
166	Question 7(a):
	$n \neq 1$ should read as $n \neq -1$
250	Point (b):
	Both mentions of $\sqrt{3i}$ should read as $\sqrt{3i}$
262	Example 10:
	In the question, $r> heta$ should read as $r>0$
278	Point (c):
	$\operatorname{arg} z^* = -\operatorname{arg} z^*$ should read as $\operatorname{arg} z^* = -\operatorname{arg} z$
282	Example 30:
	In the question, $z^2 + 2z + 2 = 0$ should read as $z^2 - 2z + 2 = 0$
314	Exercise 7.3, Question 6:
	The answer should read as $\ln 2 - 2 + \frac{\pi}{2}$
314	Exercise 7.3, Question 8:
	The answer should read as π^2-4
314	Exercise 7.3, Question 10:
	The answer should read as $\frac{x^2}{2} tan^{-1}(x^2) - \frac{1}{4} ln(1+x^4) + c$
314	Exercise 7.4, Question 2:
	The answer should read as $\pi + \sqrt{3}$
314	Exercise 8.1, Question 3:
	The answer should read as $y = \frac{1}{2}(1 - e^{1-x^2})$
315	Exercise 10.1, Question 10(a):
	The answer should read as 160.5°
315	Exercise 10.1, Question 10(c):
	The answer should read as $p = \frac{1}{2}$
317	Exercise 11.4, Question 2:
	The answer should read as
	Im ♠
	8
	$\left \frac{25}{4} \right $
	4
	Re
	O $\frac{1}{3}$ $\frac{1}{6}$ $\frac{25}{3}$
	3

ERRATA

