ERRATA

Page	Correction
66	Exercise, Question 4: $4 x=2^{x+1}+12$ should read as $4^{x}=2^{x+1}+12$
73	Example 3: In the seventh line of the workings, $2 \boldsymbol{\operatorname { s i n }} A-4 \sin ^{3} A$ should read as $\mathbf{3} \boldsymbol{\operatorname { s i n }} \boldsymbol{A}-4 \sin ^{3} A$
86	Example 18(a): The solution should read as
86	Example 18(b): The solution for the greatest value of $12 \cos x-5 \sin x$ should read as $\begin{aligned} \cos \left(x+25.1^{\circ}\right) & =1 \\ x+25.1^{\circ} & =360^{\circ} \\ x & =334.9^{\circ} \end{aligned}$ The solution for the least value of $12 \cos x-5 \sin x$ should read as $\begin{aligned} \cos \left(x+25.1^{\circ}\right) & =-1 \\ x+25.1^{\circ} & =180^{\circ} \\ x & =154.9^{\circ} \end{aligned}$
87	Example 18(c): The graph should read as
110	Example 24: The final answer should read as $-\frac{\mathbf{1}}{\boldsymbol{x}^{2}+\mathbf{1}}$
133	Example 2: $2 \int \frac{2 x+2}{x^{2}+x+3} d x$ should read as $2 \int \frac{2 x+1}{x^{2}+x+3} d x$
142	Example 13: The workings and solution should read as $\begin{aligned} \int \frac{\mathbf{e}^{2 x}-3 \mathbf{e}^{x}+1}{\mathbf{e}^{x}} \mathbf{d} x & =\int\left(\frac{\mathbf{e}^{2 x}}{\mathbf{e}^{x}}-\frac{3 \mathbf{e}^{x}}{\mathbf{e}^{x}}+\frac{1}{\mathbf{e}^{x}}\right) \mathrm{d} x \\ & =\int\left(\mathbf{e}^{x}-3+\mathbf{e}^{-x}\right) \mathbf{d} x \\ & =\mathbf{e}^{x}-3 x-\mathbf{e}^{-x}+c \end{aligned}$

ERRATA

146	Example 19: $\frac{1}{4} \int_{0}^{\frac{\pi}{2}} \frac{\cos 3 x+3 \cos x \mathrm{~d} x}{4}$ should read as $\frac{1}{4} \int_{0}^{\frac{\pi}{2}}(\cos 3 x+3 \cos x) \mathrm{d} x$
156	Example 33: In the first line of the workings, $\boldsymbol{x} \boldsymbol{\operatorname { t a n }}^{-1}$ should read as $\boldsymbol{x} \boldsymbol{\operatorname { t a n }}^{-1} \boldsymbol{x}$
157	Exercise 7.3, Question 9: $\int_{0}^{2} \tan ^{-1}\left(\frac{1}{x}\right) \mathrm{d} x$ should read as $\int_{1}^{2} \tan ^{-1}\left(\frac{1}{x}\right) \mathrm{d} x$
166	Question 7(a): $n \neq 1$ should read as $n \neq-1$
250	Point (b): Both mentions of $\sqrt{3 i}$ should read as $\sqrt{3} \mathbf{i}$
262	Example 10: In the question, $\boldsymbol{r}>\boldsymbol{\theta}$ should read as $\boldsymbol{r}>\mathbf{0}$
278	Point (c): $\arg z^{*}=-\arg z^{*}$ should read as $\arg z^{*}=-\arg z$
282	Example 30: In the question, $z^{2}+2 z+2=0$ should read as $z^{2}-2 z+2=0$
314	Exercise 7.3, Question 6: The answer should read as $\ln \mathbf{2 - 2}+\frac{\pi}{2}$
314	Exercise 7.3, Question 8: The answer should read as $\boldsymbol{\pi}^{\mathbf{2}} \mathbf{- 4}$
314	Exercise 7.3, Question 10: The answer should read as $\frac{x^{2}}{2} \boldsymbol{\operatorname { a n }}^{-1}\left(\boldsymbol{x}^{2}\right)-\frac{1}{4} \ln \left(1+\boldsymbol{x}^{4}\right)+\boldsymbol{c}$
314	Exercise 7.4, Question 2: The answer should read as $\pi+\sqrt{3}$
314	Exercise 8.1, Question 3: The answer should read as $y=\frac{1}{2}\left(1-e^{1-x^{2}}\right)$
315	Exercise 10.1, Question 10(a): The answer should read as $\mathbf{1 6 0 . 5}{ }^{\circ}$
315	Exercise 10.1, Question 10(c): The answer should read as $\boldsymbol{p}=\frac{\mathbf{1}}{\mathbf{2}}$
317	Exercise 11.4, Question 2: The answer should read as

318	Exercise 11.4, Question 4: The answer should read as
318	Exercise 11.4, Question 12(b): The answer $-\mathbf{5} \boldsymbol{e}^{-\frac{1}{3} \pi i}$ should read as $\mathbf{5} \boldsymbol{e}^{-\frac{1}{3} \pi i}$

